Evolving secret sharing schemes do not require prior knowledge of the number of parties $n$ and $n$ may be infinitely countable. It is known that the evolving $2$-threshold secret sharing scheme and prefix coding of integers have a one-to-one correspondence. However, it is not known what prefix coding of integers to use to construct the scheme better. In this paper, we propose a new metric $K_{\Sigma}$ for evolving $2$-threshold secret sharing schemes $\Sigma$. We prove that the metric $K_{\Sigma}\geq 1.5$ and construct a new prefix coding of integers, termed $\lambda$ code, to achieve the metric $K_{\Lambda}=1.59375$. Thus, it is proved that the range of the metric $K_{\Sigma}$ for the optimal $(2,\infty)$-threshold secret sharing scheme is $1.5\leq K_{\Sigma}\leq1.59375$. In addition, the reachable lower bound of the sum of share sizes for $(2,n)$-threshold secret sharing schemes is proved.
翻译:不断演变的秘密共享计划并不要求事先知道缔约方数目(美元)和美元(美元)的金额。众所周知,正在演变的2美元门槛秘密共享计划和整数前缀编码有一个一对一的对应词。然而,尚不知道用什么前缀整数编码来更好地构建计划。在本文件中,我们建议为不断演变的两美元门槛秘密共享计划(美元)提出一个新的公吨(KQ ⁇ Sigma})美元。我们证明,1.5美元(1.5美元)和建立一个新的前缀整数(美元)前缀编码(美元代码),以达到一对一的编码。但是,还不知道用来更好地构建该计划的整数前缀编码是什么前缀编码。因此,可以证明,美元(2美元)或(英法)美元(美元)的顶值秘密共享计划的范围是1.5美元(Sigma)和(q1.59755美元)。此外,共享计划可以达到的下限范围是美元(美元)的股份规模总和(美元)的股份规模。