This paper investigates the problem of cooperative tuning of multi-agent optimal control systems, where a network of agents (i.e. multiple coupled optimal control systems) adjusts parameters in their dynamics, objective functions, or controllers in a coordinated way to minimize the sum of their loss functions. Different from classical techniques for tuning parameters in a controller, we allow tunable parameters appearing in both the system dynamics and the objective functions of each agent. A framework is developed to allow all agents to reach a consensus on the tunable parameter, which minimizes team loss. The key idea of the proposed algorithm rests on the integration of consensus-based distributed optimization for a multi-agent system and a gradient generator capturing the optimal performance as a function of the parameter in the feedback loop tuning the parameter for each agent. Both theoretical results and simulations for a synchronous multi-agent rendezvous problem are provided to validate the proposed method for cooperative tuning of multi-agent optimal control.
翻译:本文探讨合作调整多试剂最佳控制系统的问题,即由各种物剂组成的网络(即多种结合的最佳控制系统)以协调的方式调整其动态、客观功能或控制器的参数,以尽量减少损失功能的总和。与控制器的典型调试参数不同,我们允许在系统动态和每个物剂的客观功能中出现可调试的参数。建立了一个框架,使所有物剂都能够就可调试的参数达成共识,从而最大限度地减少团队损失。拟议的算法的关键思想在于整合基于共识的多剂系统分布优化和梯度生成器,捕捉最佳性性能,作为每个物剂反馈回路调参数的函数。提供了同步多剂合用问题的理论结果和模拟,以验证拟议的多剂最佳控制合作调整方法。