In this paper, we study an intelligent reflecting surface (IRS) assisted communication system with single-antenna transmitter and receiver, under imperfect channel state information (CSI). More specifically, we deal with the robust selection of binary (on/off) states of the IRS elements in order to maximize the worst-case energy efficiency (EE), given a bounded CSI uncertainty, while satisfying a minimum signal-to-noise ratio (SNR). The IRS phase shifts are adjusted so as to maximize the ideal SNR (i.e., without CSI error), based only on the estimated channels. First, we derive a closed-form expression of the worst-case SNR, and then formulate the robust (discrete) optimization problem. Moreover, we design and analyze a dynamic programming (DP) algorithm that is theoretically guaranteed to achieve the global maximum with polynomial complexity $O(L \log L)$, where $L$ is the number of IRS elements. Finally, numerical simulations confirm the theoretical results. In particular, the proposed algorithm shows identical performance with the exhaustive search, and significantly outperforms a baseline scheme, namely, the activation of all IRS elements.
翻译:在本文中,我们研究的是智能反射表面辅助通信系统(IRS),在不完善的频道状态信息(CSI)下,使用单ANETNA发射机和接收器。更具体地说,我们处理的是严格选择IRS元素的二进制状态(上/下),以最大限度地实现最坏的能效(EEE),同时考虑到封闭的 CSI不确定性,同时满足最低信号对噪音比率(SNR),对IRS阶段转换进行调整,以便仅根据估计的渠道,最大限度地实现理想的SNR(即没有CSI错误)。首先,我们得出最坏的 SNR的封闭式表达方式,然后制定强(分解)优化问题。此外,我们设计并分析一种动态程序(DP)算法,从理论上保证以多元复杂度为美元(L=L)达到全球最大值,而美元是IRS元素的数量。最后,数字模拟证实了理论结果。特别是,所有拟议的算法都显示与彻底搜索相同,并且大大超出一个基线计划,即启动IRS要素。