Whole slide images (WSI) provide valuable phenotypic information for histological assessment and malignancy grading of tumors. The WSI-based grading promises to provide rapid diagnostic support and facilitate digital health. Currently, the most commonly used WSIs are derived from formalin-fixed paraffin-embedded (FFPE) and Frozen section. The majority of automatic tumor grading models are developed based on FFPE sections, which could be affected by the artifacts introduced by tissue processing. The frozen section exists problems such as low quality that might influence training within single modality as well. To overcome this problem in a single modal training and achieve better multi-modal and discriminative representation disentanglement in brain tumor, we propose a mutual contrastive low-rank learning (MCL) scheme to integrate FFPE and frozen sections for glioma grading. We first design a mutual learning scheme to jointly optimize the model training based on FFPE and frozen sections. In this proposed scheme, we design a normalized modality contrastive loss (NMC-loss), which could promote to disentangle multi-modality complementary representation of FFPE and frozen sections from the same patient. To reduce intra-class variance, and increase inter-class margin at intra- and inter-patient levels, we conduct a low-rank (LR) loss. Our experiments show that the proposed scheme achieves better performance than the model trained based on each single modality or mixed modalities and even improves the feature extraction in classical attention-based multiple instances learning methods (MIL). The combination of NMC-loss and low-rank loss outperforms other typical contrastive loss functions.
翻译:整个幻灯片图象(SSI)为肿瘤的生理评估和恶性肿瘤的恶性分级提供了宝贵的口腔信息。基于WSI的分级有望提供快速诊断支持,促进数字健康。目前,最常用的WSI来自正规化和固定的麻黄素混合部分(FFPE)和冷冻部分。大多数自动肿瘤分级模型是建立在FFPE部分基础上的,这些部分可能受到组织处理所引进的人工制品的影响。冷冻部分存在一些问题,例如质量低,可能影响到单一模式内的培训。为了在单一模式培训中克服这一问题,实现更好的多模式、多模式和有区别的表达方式在脑肿瘤中脱钩,我们建议采用相互对比的低层次学习(MCL)计划,将FFPE和冷冻部分整合在一起。我们首先设计一个相互学习计划,共同优化基于FFPE和冷却部分的模型培训。在这个拟议计划中,我们设计一种标准化的、有正统模式的、低层次损失(NMC损失)模式,这可以促进降低多模式的多模式性、多模式的多模式、多模式、多模式间和有差异的表达的表达。我们内部学习的学习过程的每个模式之间的演化方法,以显示的每个模式之间的演化过程之间的演化方法。我们之间的演化、不同的演化、不同的演化、不同的演化、不同的演化、不同的演化、不同的演化、不同的演化、不同的演化、不同的演化、演化、演化、不同的演化、不同的演化、演化、演化、演化、演化、不同的演化、演化、演化、演化、演化、演化、演化、演化、演化、演化、演化、演化、演化、演化等。