PAC-Bayes is a useful framework for deriving generalization bounds which was introduced by McAllester ('98). This framework has the flexibility of deriving distribution- and algorithm-dependent bounds, which are often tighter than VC-related uniform convergence bounds. In this manuscript we present a limitation for the PAC-Bayes framework. We demonstrate an easy learning task that is not amenable to a PAC-Bayes analysis. Specifically, we consider the task of linear classification in 1D; it is well-known that this task is learnable using just $O(\log(1/\delta)/\epsilon)$ examples. On the other hand, we show that this fact can not be proved using a PAC-Bayes analysis: for any algorithm that learns 1-dimensional linear classifiers there exists a (realizable) distribution for which the PAC-Bayes bound is arbitrarily large.


翻译:PAC-Bayes是McAllester ('98) 引入的一般性界限的有用框架。 这个框架具有产生分布和算法依赖的界限的灵活性,这些界限往往比与VC有关的统一趋同界限更为紧。 在这个手稿中,我们对PAC-Bayes框架提出了限制。 我们展示了一个不适于PAC-Bayes分析的简单学习任务。 具体地说,我们认为线性分类任务在1D中是可行的; 众所周知, 仅用$O( log( 1/ delta) /\ epsilon) 的例子就可以学习这一任务。 另一方面, 我们表明,不能用PAC- Bayes 分析来证明这一事实: 任何学习一维线性分类的算法都存在( 可实现的)分布,PAC- Bayes 界是任意很大的。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月14日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
3+阅读 · 2018年10月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员