This paper studies the computational offloading of CNN inference in dynamic multi-access edge computing (MEC) networks. To address the uncertainties in communication time and Edge servers' available capacity, we use early-exit mechanism to terminate the computation earlier to meet the deadline of inference tasks. We design a reward function to trade off the communication, computation and inference accuracy, and formulate the offloading problem of CNN inference as a maximization problem with the goal of maximizing the average inference accuracy and throughput in long term. To solve the maximization problem, we propose a graph reinforcement learning-based early-exit mechanism (GRLE), which outperforms the state-of-the-art work, deep reinforcement learning-based online offloading (DROO) and its enhanced method, DROO with early-exit mechanism (DROOE), under different dynamic scenarios. The experimental results show that GRLE achieves the average accuracy up to 3.41x over graph reinforcement learning (GRL) and 1.45x over DROOE, which shows the advantages of GRLE for offloading decision-making in dynamic MEC.


翻译:本文研究CNN在动态多接入边缘计算(MEC)网络中计算卸载CNN在动态多接入边缘计算(MEC)中的推论。为了解决通信时间和Edge服务器现有能力的不确定性,我们使用提前退出机制提前终止计算,以达到推论任务的最后期限。我们设计了一个奖励功能,以交换通信、计算和推论的准确性,并将CNN推论的卸载问题作为一个最大化问题,目的是在长期内最大限度地提高平均推论准确性和吞吐量。为了解决最大化问题,我们提议了一个基于图形的强化学习早期出勤机制(GRLE),它比最新工艺工作、深度强化基于学习的在线卸载(DROOO)及其强化方法、DROOOO与早期出载机制(DROE)在不同的动态假设下进行交换。实验结果表明,GRALE实现了平均精度,达到3.41x高于图形强化学习(GRL)和1.45x高于DROE, 这表明GLE在动态中卸载决定的优势。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员