This paper studies the computational offloading of CNN inference in dynamic multi-access edge computing (MEC) networks. To address the uncertainties in communication time and Edge servers' available capacity, we use early-exit mechanism to terminate the computation earlier to meet the deadline of inference tasks. We design a reward function to trade off the communication, computation and inference accuracy, and formulate the offloading problem of CNN inference as a maximization problem with the goal of maximizing the average inference accuracy and throughput in long term. To solve the maximization problem, we propose a graph reinforcement learning-based early-exit mechanism (GRLE), which outperforms the state-of-the-art work, deep reinforcement learning-based online offloading (DROO) and its enhanced method, DROO with early-exit mechanism (DROOE), under different dynamic scenarios. The experimental results show that GRLE achieves the average accuracy up to 3.41x over graph reinforcement learning (GRL) and 1.45x over DROOE, which shows the advantages of GRLE for offloading decision-making in dynamic MEC.
翻译:本文研究CNN在动态多接入边缘计算(MEC)网络中计算卸载CNN在动态多接入边缘计算(MEC)中的推论。为了解决通信时间和Edge服务器现有能力的不确定性,我们使用提前退出机制提前终止计算,以达到推论任务的最后期限。我们设计了一个奖励功能,以交换通信、计算和推论的准确性,并将CNN推论的卸载问题作为一个最大化问题,目的是在长期内最大限度地提高平均推论准确性和吞吐量。为了解决最大化问题,我们提议了一个基于图形的强化学习早期出勤机制(GRLE),它比最新工艺工作、深度强化基于学习的在线卸载(DROOO)及其强化方法、DROOOO与早期出载机制(DROE)在不同的动态假设下进行交换。实验结果表明,GRALE实现了平均精度,达到3.41x高于图形强化学习(GRL)和1.45x高于DROE, 这表明GLE在动态中卸载决定的优势。