We theoretically investigate the performance of $\ell_{1}$-regularized linear regression ($\ell_1$-LinR) for the problem of Ising model selection using the replica method from statistical mechanics. The regular random graph is considered under paramagnetic assumption. Our results show that despite model misspecification, the $\ell_1$-LinR estimator can successfully recover the graph structure of the Ising model with $N$ variables using $M=\mathcal{O}\left(\log N\right)$ samples, which is of the same order as that of $\ell_{1}$-regularized logistic regression. Moreover, we provide a computationally efficient method to accurately predict the non-asymptotic performance of the $\ell_1$-LinR estimator with moderate $M$ and $N$. Simulations show an excellent agreement between theoretical predictions and experimental results, which supports our findings.
翻译:我们从理论上调查美元=1美元=1美元=1美元=1美元=1美元=1美元=LinR)在使用统计力学的复制法进行模型选择问题上的常规线性回归的性能。常规随机图表是在参数磁性假设下考虑的。我们的结果表明,尽管模型有误,但美元=1美元=1美元-LinR的估测器仍能成功地用美元=mámathcal{O ⁇ left(log n\right)美元样本用美元=1美元=1美元=O ⁇ left(log N\right)的变量来恢复Ising模型的图结构。这与美元=1美元=1美元=1美元常规后勤回归的顺序相同。此外,我们提供了一种计算高效的方法来精确预测美元=1美元=1美元-Lin的估算仪性绩效。模拟显示在理论预测和实验结果之间达成了极好的一致,这支持我们的调查结果。