We show that there exist $k$-colorable matroids that are not $(b,c)$-decomposable when $b$ and $c$ are constants. A matroid is $(b,c)$-decomposable, if its ground set of elements can be partitioned into sets $X_1, X_2, \ldots, X_l$ with the following two properties. Each set $X_i$ has size at most $ck$. Moreover, for all sets $Y$ such that $|Y \cap X_i| \leq 1$ it is the case that $Y$ is $b$-colorable. A $(b,c)$-decomposition is a strict generalization of a partition decomposition and, thus, our result refutes a conjecture from arXiv:1911.10485v2 .
翻译:我们显示,存在不以美元(b,c)和美元(c)为常数的可变型机器人。如果其地面的一组元素可以分割成数x_1,X_2,\ldots,X_l$,加上以下两种属性,那么,每套美元(x_i)的大小最多为美元。此外,对于所有设定的美元,例如$_Y cap X_i ⁇ \leq 1美元,美元是可变色的。A(b,c)美元(d)的分解是分块分解的严格概括,因此,我们的结果驳斥了ArXiv:1911.10485v2的对数。