A continuous-time average consensus system is a linear dynamical system defined over a graph, where each node has its own state value that evolves according to a simultaneous linear differential equation. A node is allowed to interact with neighboring nodes. Average consensus is a phenomenon that the all the state values converge to the average of the initial state values. In this paper, we assume that a node can communicate with neighboring nodes through an additive white Gaussian noise channel. We first formulate the noisy average consensus system by using a stochastic differential equation (SDE), which allows us to use the Euler-Maruyama method, a numerical technique for solving SDEs. By studying the stochastic behavior of the residual error of the Euler-Maruyama method, we arrive at the covariance evolution equation. The analysis of the residual error leads to a compact formula for mean squared error (MSE), which shows that the sum of the inverse eigenvalues of the Laplacian matrix is the most dominant factor influencing the MSE. Furthermore, we propose optimization problems aimed at minimizing the MSE at a given target time, and introduce a deep unfolding-based optimization method to solve these problems. The quality of the solution is validated by numerical experiments.
翻译:连续时间平均一致性系统是在图上定义的线性动态系统,其中每个节点都有自己的状态值,根据同时的线性微分方程演化。一个节点可以与相邻节点交互。平均一致性是所有状态值收敛到初始状态值的平均值的现象。在本文中,我们假设一个节点可以通过加性白噪声信道与相邻节点通信。我们首先使用随机微分方程( **SDE** )来表述有噪声的平均一致性系统,这使我们能够使用欧拉-马鲁雅马方法(用于求解 SDE 的一种数值技术)。通过研究欧拉-马鲁雅马方法的残差误差的随机行为,我们得到了协方差演化方程。残差误差的分析导致了均方误差(MSE)的紧凑公式,该公式显示了拉普拉斯矩阵的逆特征值之和是影响 MSE 最主要的因素。此外,我们提出了旨在在给定目标时间内最小化 MSE 的优化问题,并引入了基于深度展开的优化方法来解决这些问题。数值实验验证了解决方案的质量。