Generative Flow Networks (GFlowNets) are probabilistic models predicated on Markov flows, employing specific amortization algorithms to learn stochastic policies that generate compositional substances including biomolecules, chemical materials, and more. Demonstrating formidable prowess in generating high-performance biochemical molecules, GFlowNets accelerate the discovery of scientific substances, effectively circumventing the time-consuming, labor-intensive, and costly shortcomings intrinsic to conventional material discovery. However, previous work often struggles to accumulate exploratory experience and is prone to becoming disoriented within expansive sampling spaces. Attempts to address this issue, such as LS-GFN, are limited to local greedy searches and lack broader global adjustments. This paper introduces a novel GFlowNets variant, the Dynamic Backtracking GFN (DB-GFN), which enhances the adaptability of decision-making steps through a reward-based dynamic backtracking mechanism. DB-GFN permits backtracking during the network construction process according to the current state's reward value, thus correcting disadvantageous decisions and exploring alternative pathways during the exploration process. Applied to generative tasks of biochemical molecules and genetic material sequences, DB-GFN surpasses existing GFlowNets models and traditional reinforcement learning methods in terms of sample quality, exploration sample quantity, and training convergence speed. Furthermore, the orthogonal nature of DB-GFN suggests its potential as a powerful tool for future improvements in GFlowNets, with the promise of integrating with other strategies to achieve more efficient search performance.
翻译:暂无翻译