Providing an optimal path to a quantum annealing algorithm is key to finding good approximate solutions to computationally hard optimization problems. Reinforcement is one of the strategies that can be used to circumvent the exponentially small energy gaps of the system in the annealing process. Here a time-dependent reinforcement term is added to the Hamiltonian in order to give lower energies to the most probable states of the evolving system. In this study, we take a local entropy in the configuration space for the reinforcement and apply the algorithm to a number of easy and hard optimization problems. The reinforced algorithm performs better than the standard quantum annealing algorithm in the quantum search problem, where the optimal parameters behave very differently depending on the number of solutions. Moreover, the reinforcements can change the discontinuous phase transitions of the mean-field p-spin model ($p>2$) to a continuous transition. The algorithm's performance in the binary perceptron problem is also superior to that of the standard quantum annealing algorithm, which already works better than a classical simulated annealing algorithm.
翻译:提供量子排泄算法的最佳路径是找到计算硬优化问题的最佳近似解决方案的关键。 强化是用来绕过系统在排泄过程中的巨大小能量差距的战略之一。 在此, 向汉密尔顿语添加了一个取决于时间的加固术语, 以便让最可能的进化系统状态得到更低的能量。 在这次研究中, 我们从配置空间中取一个本地的增压, 并将算法应用到一些简单、 硬的优化问题 。 强化算法在量子搜索问题中比标准量子排泄算法表现得更好, 因为在量子搜索中, 最佳参数的表现非常不同, 取决于解决方案的数量 。 此外, 强化可以改变平均场p- spin 模型( $>2$) 的不连续阶段转换到持续过渡 。 在二进式透镜问题中, 算法的性也优于标准量子排泄算法的性, 已经比经典模拟的模拟算法效果更好了。