We study the small sample properties of conditional quantile estimators such as classical and IV quantile regression. First, we propose a higher-order analytical framework for comparing competing estimators in small samples and assessing the accuracy of common inference procedures. Our framework is based on a novel approximation of the discontinuous sample moments by a H\"older-continuous process with a negligible error. For any consistent estimator, this approximation leads to asymptotic linear expansions with nearly optimal rates. Second, we study the higher-order bias of exact quantile estimators up to $O\left(\frac{1}{n}\right)$. Using a novel non-smooth calculus technique, we uncover previously unknown non-negligible bias components that cannot be consistently estimated and depend on the employed estimation algorithm. To circumvent this problem, we propose a "symmetric" bias correction, which admits a feasible implementation. Our simulations confirm the empirical importance of bias correction.
翻译:我们研究了传统和四四等回归等有条件的定量估计值的小型样本特性。 首先,我们提出一个更高层次的分析框架,用于比较小样本中相互竞争的估计值,并评估共同推断程序的准确性。 我们的框架是以H\"老的连续过程对不连续的样本时间的新近似值为基础,并有一个微不足道的错误。 对于任何一致的估算器来说,这种近似导致无症状线性扩展,其速率几乎是最佳的。 其次,我们研究精确的定量估计值至$O\left(frac{1 ⁇ n ⁇ right)的较高顺序偏差。 我们利用一种新型的非moth calculus技术,我们发现了以前未知的、无法持续估计的不明显的偏差部分。 为了避免这一问题,我们建议了一种“对称”偏差校正,它承认了可行的执行。我们的模拟证实了偏差纠正的经验重要性。