Information aggregation is a vital tool for human and machine decision making, especially in the presence of noise and uncertainty. Traditionally, approaches to aggregation broadly diverge into two categories, those which attribute a worth or weight to information sources and those which attribute said worth to the evidence arising from said sources. The latter is pervasive in particular in the physical sciences, underpinning linear order statistics and enabling non-linear aggregation. The former is popular in the social sciences, providing interpretable insight on the sources. Thus far, limited work has sought to integrate both approaches, applying either approach to a different degree. In this paper, we put forward an approach which integrates--rather than partially applies--both approaches, resulting in a novel joint weighted averaging operator. We show how this operator provides a systematic approach to integrating a priori beliefs about the worth of both source and evidence by leveraging compositional geometry--producing results unachievable by traditional operators. We conclude and highlight the potential of the operator across disciplines, from machine learning to psychology.


翻译:信息汇总是人类和机器决策的一个重要工具,特别是在出现噪音和不确定性的情况下。传统上,信息汇总是人类和机器决策的重要工具,在传统上,将两种方法混为一谈的方法大相径庭,一种是赋予信息来源价值或份量,另一种是赋予信息来源价值或份量,另一种是赋予由上述来源产生的证据的,后者在物理科学中尤为普遍,支持线性顺序统计,使非线性汇总成为可能。前者在社会科学中很受欢迎,对来源提供了可解释的洞察力。迄今为止,在将两种方法结合起来方面所做的工作有限,在不同的程度上适用两种方法。在本文件中,我们提出了一种将两种方法结合起来的方法,而不是部分地适用两种方法,结果产生了一个新的共同加权平均操作者。我们展示了该操作者如何通过利用传统操作者无法实现的构成性几何测结果,系统地整合关于源值和证据的先入为主的信念。我们得出结论并强调了操作者从机器学习到心理学的跨学科的潜力。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员