In contrast to 2-D ultrasound (US) for uniaxial plane imaging, a 3-D US imaging system can visualize a volume along three axial planes. This allows for a full view of the anatomy, which is useful for gynecological (GYN) and obstetrical (OB) applications. Unfortunately, the 3-D US has an inherent limitation in resolution compared to the 2-D US. In the case of 3-D US with a 3-D mechanical probe, for example, the image quality is comparable along the beam direction, but significant deterioration in image quality is often observed in the other two axial image planes. To address this, here we propose a novel unsupervised deep learning approach to improve 3-D US image quality. In particular, using {\em unmatched} high-quality 2-D US images as a reference, we trained a recently proposed switchable CycleGAN architecture so that every mapping plane in 3-D US can learn the image quality of 2-D US images. Thanks to the switchable architecture, our network can also provide real-time control of image enhancement level based on user preference, which is ideal for a user-centric scanner setup. Extensive experiments with clinical evaluation confirm that our method offers significantly improved image quality as well user-friendly flexibility.
翻译:与不轴平面成像的二维超声波(US)相比,三维美国成像系统可以在三个轴平面上看到一个音量。 这样可以全面观察解剖学, 这对于妇科( GYN) 和产科( OB) 应用是有用的。 不幸的是, 三维美国与二维美国相比在分辨率上有内在限制。 例如, 三维美国使用三维机械探测器, 图像质量可以与光线方向相仿, 但是在其他两个轴平面上经常观察到图像质量的显著恶化。 为了解决这个问题, 我们在这里提出了一个新的不受监督的深层次学习方法, 以提高三维美国图像质量。 特别是, 使用高品质的二维美国图像作为参考, 我们培训了最近提出的可转换的三维机器GAN结构, 以便每张三维的测绘平面都能学习二维美国图像的图像质量。 感谢可转换的结构, 我们的网络还可以提供实时的图像质量恶化控制, 提高用户质量水平的深度实验, 以用户偏好的扫描器为基础,, 提供了一种高度的用户质量度的临床分析, 。