This paper proposes a replica exchange preconditioned Langevin diffusion discretized by the Crank-Nicolson scheme (repCNLD) to handle high-dimensional and multi-modal distribution problems. Sampling from high-dimensional and multi-modal distributions is a challenging question. The performance of many standard MCMC chains deteriorates as the dimension of parameters increases, and many MCMC algorithms cannot capture all modes if the energy function is not convex. The proposed repCNLD can accelerate the convergence of the single-chain pCNLD, and can capture all modes of the multi-modal distributions. We proposed the Crank-Nicolson discretization, which is robust. Moreover, the discretization error grows linearly with respect to the time step size. We extend repCNLD to the multi-variance setting to further accelerate the convergence and save computation costs. Additionally, we derive an unbiased estimator of the swapping rate for the multi-variance repCNLD method, providing a guide for the choice of the low-fidelity model used in the second chain. We test our methods with high-dimensional Gaussian mixture models and high-dimensional nonlinear PDE inverse problems. Particularly, we employ the discrete adjoint method to efficiently calculate gradients for nonlinear PDE inverse problems.


翻译:本文提出一个复制式交换,其前提是兰格文扩散,由Crank-Nicolson(repCNLD)方案(repCNLD)分解,处理高维和多模式分布问题。从高维和多模式分布进行取样是一个具有挑战性的问题。许多标准的MCMC链的性能随着参数范围的增加而恶化,许多MCMC链的性能如果能源功能不相容,许多MCMC算法不能涵盖所有模式。拟议的REPCNLD可以加速单链 PCNLD的趋同,并能够捕捉多模式分布的所有模式。我们建议了Crank-Nicolson离散化,这是强有力的。此外,离散错误随着时间步骤的大小而直线增长。我们把SAPCNLD扩大到多种变异环境,以进一步加速趋同和节省计算成本。此外,我们对多变量CNLD方法的互换率进行了公正的估计,为选择在第二链中使用的低纤维模式提供了指南。我们测试了我们在高维、高维的PDE模型中采用高水平的多维标准的多级模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月16日
Arxiv
0+阅读 · 2022年12月15日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员