We study the ranking of individuals, teams, or objects on the basis of pairwise comparisons using the Bradley-Terry model. Maximum-likelihood estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that solves the same problem much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive some results regarding its convergence.
翻译:我们在使用布拉德利-泰瑞模型进行对称比较的基础上研究个人、团队或物体的排名。通常使用泽尔梅洛在近一个世纪前首次引入的简单迭代算法对模型中的排名进行最大可能的估计。这里我们描述了一种替代的和类似的简单迭代法,它能更快地解决同样的问题 -- -- 在某些情况下速度要快一百倍以上。我们用一系列样板数据集的应用来证明这种算法,并得出一些关于其趋同的结果。