We address the problem of synthesizing distorting mechanisms that maximize privacy of stochastic dynamical systems. Information about the system state is obtained through sensor measurements. This data is transmitted to a remote station through an unsecured/public communication network. We aim to keep part of the system state private (a private output); however, because the network is unsecured, adversaries might access sensor data and input signals, which can be used to estimate private outputs. To prevent an accurate estimation, we pass sensor data and input signals through a distorting (privacy-preserving) mechanism before transmission, and send the distorted data to the trusted user. These mechanisms consist of a coordinate transformation and additive dependent Gaussian vectors. We formulate the synthesis of the distorting mechanisms as a convex program, where we minimize the mutual information (our privacy metric) between an arbitrarily large sequence of private outputs and the disclosed distorted data for desired distortion levels -- how different actual and distorted data are allowed to be.
翻译:我们处理综合扭曲机制的问题,这种机制能最大限度地扩大随机动态系统的隐私。关于系统状态的信息是通过传感器测量获得的。这些数据通过无保障/公共通信网络传送到远程站。我们的目标是保持系统的一部分国有私人(私人产出);然而,由于网络是无保障的,对手可能获取传感器数据和输入信号,而这些数据和输入信号可用来估计私人产出。为了防止准确的估计,我们在传输之前通过扭曲(隐私保护)机制传递传感器数据和输入信号,并将扭曲的数据发送给受信任的用户。这些机制包括协调转换和添加依赖高斯的矢量。我们把扭曲机制合成成一个螺旋式程序,把任意大型的私人产出序列与被披露的扭曲数据之间的相互信息(我们的隐私度)最小化,从而尽可能减少任意大型的私人产出序列与预期扭曲水平的数据之间的相互信息(我们的隐私度) -- -- 允许不同的实际和扭曲数据是如何允许的。