Neural style transfer is a well-known branch of deep learning research, with many interesting works and two major drawbacks. Most of the works in the field are hard to use by non-expert users and substantial hardware resources are required. In this work, we present a solution to both of these problems. We have applied neural style transfer to real-time video (over 25 frames per second), which is capable of running on mobile devices. We also investigate the works on achieving temporal coherence and present the idea of fine-tuning, already trained models, to achieve stable video. What is more, we also analyze the impact of the common deep neural network architecture on the performance of mobile devices with regard to number of layers and filters present. In the experiment section we present the results of our work with respect to the iOS devices and discuss the problems present in current Android devices as well as future possibilities. At the end we present the qualitative results of stylization and quantitative results of performance tested on the iPhone 11 Pro and iPhone 6s. The presented work is incorporated in Kunster - AR Art Video Maker application available in the Apple's App Store.


翻译:神经风格传输是深层学习研究的一个众所周知的分支,有许多有趣的作品和两个主要缺陷。 实地的大部分工程很难被非专家用户使用,需要大量硬件资源。 在这项工作中,我们提出了解决这两个问题的办法。 我们将神经风格传输应用到实时视频(每秒25个以上),它能够运行在移动设备上。 我们还调查了实现时间一致性的工作,并提出了微调、已经经过培训的模型的想法,以便实现稳定的视频。 此外,我们还分析了共同的深神经网络结构对移动设备在现有层和过滤器数量方面性能的影响。 在试验部分,我们介绍了我们有关iOS设备的工作结果,并讨论了目前安卓装置中存在的问题以及未来的可能性。 最后,我们介绍了iPhone 11 Pro 和iPhone 6 上测试的性能质化和定量结果。 介绍的工作被纳入了苹果的Appre 。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2019年4月4日
Arxiv
7+阅读 · 2018年4月24日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Top
微信扫码咨询专知VIP会员