We introduce NeuralProphet, a successor to Facebook Prophet, which set an industry standard for explainable, scalable, and user-friendly forecasting frameworks. With the proliferation of time series data, explainable forecasting remains a challenging task for business and operational decision making. Hybrid solutions are needed to bridge the gap between interpretable classical methods and scalable deep learning models. We view Prophet as a precursor to such a solution. However, Prophet lacks local context, which is essential for forecasting the near-term future and is challenging to extend due to its Stan backend. NeuralProphet is a hybrid forecasting framework based on PyTorch and trained with standard deep learning methods, making it easy for developers to extend the framework. Local context is introduced with auto-regression and covariate modules, which can be configured as classical linear regression or as Neural Networks. Otherwise, NeuralProphet retains the design philosophy of Prophet and provides the same basic model components. Our results demonstrate that NeuralProphet produces interpretable forecast components of equivalent or superior quality to Prophet on a set of generated time series. NeuralProphet outperforms Prophet on a diverse collection of real-world datasets. For short to medium-term forecasts, NeuralProphet improves forecast accuracy by 55 to 92 percent.
翻译:我们引入了Nealprophet, 这是Facebook先知的继承者, 它为可解释、可扩展和用户友好的预测框架制定了行业标准。 随着时间序列数据的扩散, 可解释的预测仍然是商业和业务决策的一项艰巨任务。 需要混合解决方案来弥合可解释的古典方法和可伸缩的深层学习模式之间的差距。 我们视先知为这一解决方案的先锋。 然而, 先知缺乏当地背景, 而这对于预测近期未来至关重要, 并且由于Stan的后端而难以扩展。 神经预测是一个混合的预测框架, 以PyTorrch为基础, 并经过标准的深层次学习方法培训, 使得开发者容易扩展框架。 本地环境由自动反向和共变换模块引入, 可以被配置为典型的线性回归或神经网络。 否则, NealProphet保留了先知的设计理念, 并提供同样的基本模型组成部分。 我们的结果表明, Neal Prepheit 生成了与先知相当或高品质的可解释的预测组成部分, 以生成的时间序列为基础。 神经Prophephet outsutal out prifilles prifillations to real sal sal sal preal sal sal pillationals prepillation.