Graph neural networks (GNNs) have been broadly studied on dynamic graphs for their representation learning, majority of which focus on graphs with homogeneous structures in the spatial domain. However, many real-world graphs - i.e., heterogeneous temporal graphs (HTGs) - evolve dynamically in the context of heterogeneous graph structures. The dynamics associated with heterogeneity have posed new challenges for HTG representation learning. To solve this problem, in this paper, we propose heterogeneous temporal graph neural network (HTGNN) to integrate both spatial and temporal dependencies while preserving the heterogeneity to learn node representations over HTGs. Specifically, in each layer of HTGNN, we propose a hierarchical aggregation mechanism, including intra-relation, inter-relation, and across-time aggregations, to jointly model heterogeneous spatial dependencies and temporal dimensions. To retain the heterogeneity, intra-relation aggregation is first performed over each slice of HTG to attentively aggregate information of neighbors with the same type of relation, and then intra-relation aggregation is exploited to gather information over different types of relations; to handle temporal dependencies, across-time aggregation is conducted to exchange information across different graph slices over the HTG. The proposed HTGNN is a holistic framework tailored heterogeneity with evolution in time and space for HTG representation learning. Extensive experiments are conducted on the HTGs built from different real-world datasets and promising results demonstrate the outstanding performance of HTGNN by comparison with state-of-the-art baselines. Our built HTGs and code have been made publicly accessible at: https://github.com/YesLab-Code/HTGNN.


翻译:在动态图中广泛研究了用于其代表性学习的动态神经网(GNN),其中多数侧重于空间域中具有同质结构的图形。然而,许多真实世界图(即混杂时间图(HTGGs))在混杂图形结构中动态地演变。与异质性相关的动态为HTG代表性学习带来了新的挑战。为了解决这个问题,我们提议了混杂的时间图神经网(HTGNN)结合空间和时间依赖性,同时保护异质性以学习HTC的同质结构。具体地说,在HTGGNNN的每个层中,我们建议了一个等级组合机制,包括内部关系、相互关系和跨时间组合,以联合模型构建异质性空间依赖性和时间维度。为了保持异异质性,内部关系汇总首先在HTG的每块中进行,由同一类型关系对邻居进行敏锐锐的汇总信息,然后在内部关系中进行。在HGNT的配置中,我们利用一个等级组合组合,在不同的时间图中进行不同类型中进行数据交换。

0
下载
关闭预览

相关内容

【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
图注意力网络
科技创新与创业
35+阅读 · 2017年11月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
4+阅读 · 2020年9月28日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
图注意力网络
科技创新与创业
35+阅读 · 2017年11月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员