We propose a framework inspired by biological vision systems to produce saliency maps of digital images. Well-known computational models for receptive fields of areas in the visual cortex that are specialized for color and orientation perception are used. To model the connectivity between these areas we use the CARLsim library which is a spiking neural network(SNN) simulator. The spikes generated by CARLsim, then serve as extracted features and input to our saliency detection algorithm. This new method of saliency detection is described and applied to benchmark images.
翻译:我们提议了一个由生物视觉系统启发的框架,以制作显眼的数字图像地图。 使用了专门用于颜色和定向感知的视觉皮层区域可接受域的著名计算模型。 为了模拟这些地区之间的连接,我们使用了CARLsim 图书馆,这是一个振动神经网络模拟器。 CARLsim 生成的峰值,然后作为提取的特征和输入,用于我们的显眼检测算法。 这种显眼检测的新方法被描述并应用于基准图像。