Internet-of-Things (IoT) networks intelligently connect thousands of physical entities to provide various services for the community. It is witnessing an exponential expansion, which is complicating the process of discovering IoT devices existing in the network and requesting corresponding services from them. As the highly dynamic nature of the IoT environment hinders the use of traditional solutions of service discovery, we aim, in this paper, to address this issue by proposing a scalable resource allocation neural model adequate for heterogeneous large-scale IoT networks. We devise a Graph Neural Network (GNN) approach that utilizes the social relationships formed between the devices in the IoT network to reduce the search space of any entity lookup and acquire a service from another device in the network. This proposed resource allocation approach surpasses standardization issues and embeds the structure and characteristics of the social IoT graph, by the means of GNNs, for eventual clustering analysis process. Simulation results applied on a real-world dataset illustrate the performance of this solution and its significant efficiency to operate on large-scale IoT networks.
翻译:由于国际互联网网络环境的高度动态性阻碍了服务发现的传统解决办法的使用,我们在本文件中的目标是通过提出一个可扩展的资源分配神经模型,为各种大型国际互联网网络提供各种服务。我们设计了一个图形神经网络(GNN)方法,利用国际互联网网络各装置之间形成的社会关系,减少任何实体的搜索空间,并从网络中的另一装置获取服务。由于国际互联网网络环境的高度动态性阻碍了使用传统的服务发现解决方案,因此我们在本文件中力求解决这一问题,为此提出一个可扩展的资源分配神经模型,以适合多种不同的大型国际互联网网络。我们设计了一个图形神经网络(GNN)方法,以利用国际互联网网络各装置之间形成的社会关系来减少任何实体的搜索空间,并从网络中的另一装置获取服务。这一拟议的资源分配方法超越了标准化问题,并嵌入了社会互联网图的结构和特点,通过全球互联网网络的手段,最终进行集群分析。在真实世界数据集上应用模拟结果,说明这一解决方案的绩效及其在大规模国际互联网网络上运行的显著效率。