Traditionally, 3D indoor scene reconstruction from posed images happens in two phases: per-image depth estimation, followed by depth merging and surface reconstruction. Recently, a family of methods have emerged that perform reconstruction directly in final 3D volumetric feature space. While these methods have shown impressive reconstruction results, they rely on expensive 3D convolutional layers, limiting their application in resource-constrained environments. In this work, we instead go back to the traditional route, and show how focusing on high quality multi-view depth prediction leads to highly accurate 3D reconstructions using simple off-the-shelf depth fusion. We propose a simple state-of-the-art multi-view depth estimator with two main contributions: 1) a carefully-designed 2D CNN which utilizes strong image priors alongside a plane-sweep feature volume and geometric losses, combined with 2) the integration of keyframe and geometric metadata into the cost volume which allows informed depth plane scoring. Our method achieves a significant lead over the current state-of-the-art for depth estimation and close or better for 3D reconstruction on ScanNet and 7-Scenes, yet still allows for online real-time low-memory reconstruction. Code, models and results are available at https://nianticlabs.github.io/simplerecon
翻译:传统上, 3D 室内场景从图像显示后重建分为两个阶段: 人均图像深度估计, 其次是深度合并和表面重建。 最近, 出现了一套方法, 直接在最终的 3D 体积空间进行重建。 虽然这些方法显示了令人印象深刻的重建成果, 但它们依赖于昂贵的 3D 进化层, 限制了其在资源受限制环境中的应用。 在这项工作中, 我们转而回到传统路线, 并展示如何利用简单的现成深度集深层集成, 以高质量的多视深度预测为高度精确的 3D 重建。 我们提议了一个简单、 最先进的多视深度估计器, 并有两个主要贡献:(1) 一个精心设计的 2D CNN, 利用了强的图像, 与平面扫荡特性体积和几何损失相结合。 2) 将关键框架和几何元元数据整合到成本量中, 从而能够知情的深度评分。 我们的方法在目前的3D 深度和7Scenenet 和7Scennibestes 深度再建3D 和3Scenestestimestal redual res redustrual reports.