Code revert prediction, a specialized form of software defect detection, aims to forecast or predict the likelihood of code changes being reverted or rolled back in software development. This task is very important in practice because by identifying code changes that are more prone to being reverted, developers and project managers can proactively take measures to prevent issues, improve code quality, and optimize development processes. However, compared to code defect detection, code revert prediction has been rarely studied in previous research. Additionally, many previous methods for code defect detection relied on independent features but ignored relationships between code scripts. Moreover, new challenges are introduced due to constraints in an industry setting such as company regulation, limited features and large-scale codebase. To overcome these limitations, this paper presents a systematic empirical study for code revert prediction that integrates the code import graph with code features. Different strategies to address anomalies and data imbalance have been implemented including graph neural networks with imbalance classification and anomaly detection. We conduct the experiments on real-world code commit data within J.P. Morgan Chase which is extremely imbalanced in order to make a comprehensive comparison of these different approaches for the code revert prediction problem.
翻译:暂无翻译