Currently, in the numerical linear algebra community, it is thought that to obtain nearly-optimal bounds for various problems such as rank computation, finding a maximal linearly independent subset of columns, regression, low rank approximation, maximum matching on general graphs and linear matroid union, one would need to resolve the main open question of Nelson and Nguyen (FOCS, 2013) regarding the logarithmic factors in the sketching dimension for existing constant factor approximation oblivious subspace embeddings. We show how to bypass this question using a refined sketching technique, and obtain optimal or nearly optimal bounds for these problems. A key technique we use is an explicit mapping of Indyk based on uncertainty principles and extractors, which after first applying known oblivious subspace embeddings, allows us to quickly spread out the mass of the vector so that sampling is now effective, and we avoid a logarithmic factor that is standard in the sketching dimension resulting from matrix Chernoff bounds. For the fundamental problems of rank computation and finding a linearly independent subset of columns, our algorithms improve Cheung, Kwok, and Lau (JACM, 2013) and are optimal to within a constant factor and a $\log\log(n)$-factor, respectively. Further, for constant factor regression and low rank approximation we give the first optimal algorithms, for the current matrix multiplication exponent.
翻译:目前,在数字线性代数群中,人们认为,要为诸如等级计算等各种问题获得接近最佳的最佳线性边框,找到最大线性独立的柱子子子、回归、低级近似、一般图表和线性机器人结合的最大匹配,就需要解决Nelson和Nguyen的主要未决问题(FOCS,2013年),即关于现有恒定系数近似隐蔽的子空间嵌入的草图层面中的对数因素(FOCS,2013年)。我们展示了如何使用精细化的草图技术绕过这个问题,并找到解决这些问题的最佳或近于最佳的界限。我们使用的一种关键技术是以不确定性原则和提取器为基础对印地克进行明确的绘图,在首次应用已知的显性子空间嵌入后,使我们能够迅速将矢量的质量扩散出去,以便现在取样是有效的,我们避免了一种标准草图层面的对数因素,即Chernoff绑定线性计算和找到直线性独立的柱子子,而我们所使用的算法根据不确定性原则和提取的精度原则(JACM,2013年)和Laimalimalimalimalimalimalimal 分别给了我们一个不变的不变的基系数。