The ability to capture complex linguistic structures and long-term dependencies among words in the passage is essential for many natural language understanding tasks. In relation extraction, dependency trees that contain rich syntactic clues have been widely used to help capture long-term dependencies in text. Graph neural networks (GNNs), one of the means to encode dependency graphs, has been shown effective in several prior works. However, relatively little attention has been paid to the receptive fields of GNNs, which can be crucial in tasks with extremely long text that go beyond single sentences and require discourse analysis. In this work, we leverage the idea of graph pooling and propose the Mirror Graph Convolution Network (MrGCN), a GNN model with pooling-unpooling structures tailored to relation extraction. The pooling branch reduces the graph size and enables the GCN to obtain larger receptive fields within less layers; the unpooling branch restores the pooled graph to its original resolution such that token-level relation extraction can be performed. Experiments on two datasets demonstrate the effectiveness of our method, showing significant improvements over previous results.


翻译:对于许多自然语言理解任务而言,捕捉复杂的语言结构和文字之间长期依赖性的能力是许多自然语言理解任务的关键。在提取方面,含有丰富的合成线索的依附树被广泛用于帮助捕捉文字的长期依赖性。图神经网络(GNNS)是编码依赖性图解的一种手段,在以前的若干著作中已证明是有效的。然而,对于GNNs的可接受域,相对较少注意,这些可接受域在超过单句并需要讨论分析的极长的文本的任务中可能至关重要。在这项工作中,我们利用了图集的想法,并提出了镜像图集网络(MRGCN),这是一个GNNN模型,其集合-无集合结构是专门设计用于联系提取的。集合分支缩小了图形的大小,使GCN能够在较少的层内获得更大的可接受域;没有组合的分支将集合图恢复到最初的分辨率,从而可以进行象征性程度的关系提取。在两个数据集上进行的实验显示了我们的方法的有效性,显示比以往的结果显著改进。

0
下载
关闭预览

相关内容

【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
3+阅读 · 2020年4月29日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
3+阅读 · 2020年4月29日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员