The ability to capture complex linguistic structures and long-term dependencies among words in the passage is essential for many natural language understanding tasks. In relation extraction, dependency trees that contain rich syntactic clues have been widely used to help capture long-term dependencies in text. Graph neural networks (GNNs), one of the means to encode dependency graphs, has been shown effective in several prior works. However, relatively little attention has been paid to the receptive fields of GNNs, which can be crucial in tasks with extremely long text that go beyond single sentences and require discourse analysis. In this work, we leverage the idea of graph pooling and propose the Mirror Graph Convolution Network (MrGCN), a GNN model with pooling-unpooling structures tailored to relation extraction. The pooling branch reduces the graph size and enables the GCN to obtain larger receptive fields within less layers; the unpooling branch restores the pooled graph to its original resolution such that token-level relation extraction can be performed. Experiments on two datasets demonstrate the effectiveness of our method, showing significant improvements over previous results.
翻译:对于许多自然语言理解任务而言,捕捉复杂的语言结构和文字之间长期依赖性的能力是许多自然语言理解任务的关键。在提取方面,含有丰富的合成线索的依附树被广泛用于帮助捕捉文字的长期依赖性。图神经网络(GNNS)是编码依赖性图解的一种手段,在以前的若干著作中已证明是有效的。然而,对于GNNs的可接受域,相对较少注意,这些可接受域在超过单句并需要讨论分析的极长的文本的任务中可能至关重要。在这项工作中,我们利用了图集的想法,并提出了镜像图集网络(MRGCN),这是一个GNNN模型,其集合-无集合结构是专门设计用于联系提取的。集合分支缩小了图形的大小,使GCN能够在较少的层内获得更大的可接受域;没有组合的分支将集合图恢复到最初的分辨率,从而可以进行象征性程度的关系提取。在两个数据集上进行的实验显示了我们的方法的有效性,显示比以往的结果显著改进。