The recent advances in 3D sensing technology have made possible the capture of point clouds in significantly high resolution. However, increased detail usually comes at the expense of high storage, as well as computational costs in terms of processing and visualization operations. Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features. Traditional simplification techniques usually rely on solving a time-consuming optimization problem, hence they are impractical for large-scale datasets. In an attempt to alleviate this computational burden, we propose a fast point cloud simplification method by learning to sample salient points. The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error. The approach is extensively evaluated on various datasets using several perceptual metrics. Importantly, our method is able to generalize to out-of-distribution shapes, hence demonstrating zero-shot capabilities.


翻译:3D遥感技术的最近进展使得能够以高分辨率捕捉点云。然而,由于细节的增加,通常会牺牲高储存以及处理和可视化操作的计算成本。网状和点云简化方法旨在降低3D模型的复杂性,同时保留视觉质量和相关显著特征。传统简化技术通常依赖于解决耗时的优化问题,因此对于大型数据集来说是不切实际的。为了减轻这一计算负担,我们建议了一种速点云简化方法,通过学习到抽样突出点。拟议方法依靠一个经过培训的图形神经网络结构,从输入空间选择一个任意的、用户定义的、数目的点,并重新排列其位置,以尽量减少视觉认知错误。该方法利用几种概念性指标对各种数据集进行了广泛评价。重要的是,我们的方法能够概括出分布形状,从而显示零射能力。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
113+阅读 · 2020年10月8日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Arxiv
7+阅读 · 2018年11月27日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
113+阅读 · 2020年10月8日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员