In this article, we study the binomial mixture model under the regime that the binomial size $m$ can be relatively large compared to the sample size $n$. This project is motivated by the GeneFishing method (Liu et al., 2019), whose output is a combination of the parameter of interest and the subsampling noise. To tackle the noise in the output, we utilize the observation that the density of the output has a U shape and model the output with the binomial mixture model under a U shape constraint. We first analyze the estimation of the underlying distribution F in the binomial mixture model under various conditions for F. Equipped with these theoretical understandings, we propose a simple method Ucut to identify the cutoffs of the U shape and recover the underlying distribution based on the Grenander estimator (Grenander, 1956). It has been shown that when $m = {\Omega}(n^{\frac{2}{3}})$, he identified cutoffs converge at the rate $O(n^{-\frac{1}{3}})$. The $L_1$ distance between the recovered distribution and the true one decreases at the same rate. To demonstrate the performance, we apply our method to varieties of simulation studies, a GTEX dataset used in (Liu et al., 2019) and a single cell dataset from Tabula Muris.
翻译:在此篇文章中, 我们研究二进制的二进制混合物模式, 相对于样本规模而言, 二进制规模 百万美元可以相对较大。 这个项目是由GeneFishing方法( Liu等人, 2019年)推动的, 其产出是利益参数和子抽样噪音的组合。 要解决输出中的噪音, 我们使用这样的观察, 产出的密度在U形状限制下以二进制混合物模式为U形状和输出模型。 我们首先分析F中二进制混合模式中F基本分布的估算值, 在F. Equipped这些理论理解的条件下, 我们提出一个简单的方法, 确定U形状的切断点, 并恢复基于 Grenander Sitemator ( Grenander, 1956年) 的基本分布。 我们用美元表示 = = yOmega (nffrac {2 ⁇ 3 ⁇ 3 ⁇ ) $。 他发现, 和 muralal etroal 等值的切值与 等值比率( $\\\\\\ grodeal preal destal sestal resis) laction a destal deal deal deal delection laction a laction a laction a laction a exm destal deal dism dis.