We present a universal preconditioner $\Gamma$ that is applicable to all invertible linear problems $A x = y$ for which an approximate inverse is available. After preconditioning, the condition number depends on the norm of the discrepancy of this approximation instead of that of the original, potentially unbounded, system. We prove that our construct is the only universal approach that ensures that $\lVert 1-\Gamma^{-1} A \rVert<1$ in all cases, thus enabling the use of the highly memory efficient Richardson iteration. Its unique form permits the elimination of the forward problem from the preconditioned system, often halving the time required per iteration. We demonstrate and evaluate our approach for wave problems, diffusion problems, and the pantograph delay differential equation.
翻译:我们提出了一个通用的前提条件$\Gamma$,适用于所有不可逆的线性问题,对于这个问题,可以找到大约相反的一美元x=y美元。在先决条件之后,条件号码取决于这一近似值差异的规范,而不是原始的、可能没有约束的系统。我们证明,我们的结构是唯一的通用办法,确保在所有情况下都使用$lVert 1-\\Gamma ⁇ -1}A\rVert < 1美元,从而能够使用高记忆效率的理查森迭代法。它的独特形式使得先期问题能够从先决条件的系统中消除,常常将每迭代所需时间减半。我们展示和评估我们处理波问题、扩散问题和拼图延迟差异方程的方法。