We study quasi-Monte Carlo (QMC) integration over the multi-dimensional unit cube in several weighted function spaces with different smoothness classes. We consider approximating the integral of a function by the median of several integral estimates under independent and random choices of the underlying QMC point sets (either linearly scrambled digital nets or infinite-precision polynomial lattice point sets). Even though our approach does not require any information on the smoothness and weights of a target function space as an input, we can prove a probabilistic upper bound on the worst-case error for the respective weighted function space. Our obtained rates of convergence are nearly optimal for function spaces with finite smoothness, and we can attain a dimension-independent super-polynomial convergence for a class of infinitely differentiable functions. This implies that our median-based QMC rule is universal in terms of both smoothness and weights in function spaces. Numerical experiments support our theoretical results.
翻译:我们研究多维元体立方体的准蒙特卡洛(QMC)整合。 我们考虑在独立和随机选择基基质的QMC点组合(要么是线性操纵数字网,要么是无限精度多球球点组合)下,以不同平滑等级的多个加权功能空间来研究多维单位立方体的准蒙卡(QMC)整合。 尽管我们的方法并不要求任何关于目标功能空间的平稳度和重量的信息作为输入,但我们可以证明,在相应的加权功能空间的最坏情况错误上,我们获得的合并率是概率性的上限。我们对有限的光滑度功能空间来说几乎是最佳的,我们可以为无限不同功能的类别实现维度独立的超极极共性趋同。 这意味着,我们基于中位的QMC规则在功能空间的平滑度和重量方面都是普遍的。 数字实验支持我们的理论结果。