The property of conformal predictors to guarantee the required accuracy rate makes this framework attractive in various practical applications. However, this property is achieved at a price of reduction in precision. In the case of conformal classification, the systems can output multiple class labels instead of one. It is also known from the literature, that the choice of nonconformity function has a major impact on the efficiency of conformal classifiers. Recently, it was shown that different model-agnostic nonconformity functions result in conformal classifiers with different characteristics. For a Neural Network-based conformal classifier, the inverse probability (or hinge loss) allows minimizing the average number of predicted labels, and margin results in a larger fraction of singleton predictions. In this work, we aim to further extend this study. We perform an experimental evaluation using 8 different classification algorithms and discuss when the previously observed relationship holds or not. Additionally, we propose a successful method to combine the properties of these two nonconformity functions. The experimental evaluation is done using 11 real and 5 synthetic datasets.


翻译:用于保证所要求的准确率的符合性预测器的属性使这一框架在各种实际应用中具有吸引力。然而,这一属性是以降低精确度的价格实现的。在符合性分类的情况下,这些系统可以输出多类标签,而不是一个标签。从文献中也知道,选择不符合性功能对符合性分类器的效率有重大影响。最近,人们发现,不同的模型 -- -- 不可知性不符合性功能导致具有不同特性的符合性分类器。对于基于神经网络的符合性分类器来说,反概率(或临界损失)可以使预测的标签平均数量最小化,而差值则导致单子预测的更大部分。在这项工作中,我们的目标是进一步扩展这项研究。我们使用8种不同的分类算法进行实验性评估,并在先前观察到的关系保持或没有保持时进行讨论。此外,我们建议一种成功的方法,将这两个不兼容性功能的特性结合起来。实验性评估使用11个实际和5个合成数据集进行。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月7日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员