Synthetic-to-real transfer learning is a framework in which a synthetically generated dataset is used to pre-train a model to improve its performance on real vision tasks. The most significant advantage of using synthetic images is that the ground-truth labels are automatically available, enabling unlimited expansion of the data size without human cost. However, synthetic data may have a huge domain gap, in which case increasing the data size does not improve the performance. How can we know that? In this study, we derive a simple scaling law that predicts the performance from the amount of pre-training data. By estimating the parameters of the law, we can judge whether we should increase the data or change the setting of image synthesis. Further, we analyze the theory of transfer learning by considering learning dynamics and confirm that the derived generalization bound is consistent with our empirical findings. We empirically validated our scaling law on various experimental settings of benchmark tasks, model sizes, and complexities of synthetic images.


翻译:合成向实际转移学习是一个框架,在这个框架中,合成生成的数据集被用来预先培训一个模型,以提高其真实愿景任务的业绩。使用合成图像的最大好处是,地面真实标签自动提供,可以无限制地扩大数据规模,而无需人工成本。然而,合成数据可能存在巨大的领域差距,在这种情况下,增加数据规模并不能改善性能。我们如何知道这一点?在这个研究中,我们得出一个简单的缩放法,从培训前数据的数量中预测性能。通过估算法律参数,我们可以判断我们是否应该增加数据或改变图像合成的设置。此外,我们通过考虑学习动态分析转移学习理论,确认衍生的概括性约束与我们的经验调查结果一致。我们通过经验验证了我们关于各种实验性基准任务、模型大小和合成图像复杂性的缩放法。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月1日
Arxiv
0+阅读 · 2021年11月26日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员