Synthetic-to-real transfer learning is a framework in which a synthetically generated dataset is used to pre-train a model to improve its performance on real vision tasks. The most significant advantage of using synthetic images is that the ground-truth labels are automatically available, enabling unlimited expansion of the data size without human cost. However, synthetic data may have a huge domain gap, in which case increasing the data size does not improve the performance. How can we know that? In this study, we derive a simple scaling law that predicts the performance from the amount of pre-training data. By estimating the parameters of the law, we can judge whether we should increase the data or change the setting of image synthesis. Further, we analyze the theory of transfer learning by considering learning dynamics and confirm that the derived generalization bound is consistent with our empirical findings. We empirically validated our scaling law on various experimental settings of benchmark tasks, model sizes, and complexities of synthetic images.
翻译:合成向实际转移学习是一个框架,在这个框架中,合成生成的数据集被用来预先培训一个模型,以提高其真实愿景任务的业绩。使用合成图像的最大好处是,地面真实标签自动提供,可以无限制地扩大数据规模,而无需人工成本。然而,合成数据可能存在巨大的领域差距,在这种情况下,增加数据规模并不能改善性能。我们如何知道这一点?在这个研究中,我们得出一个简单的缩放法,从培训前数据的数量中预测性能。通过估算法律参数,我们可以判断我们是否应该增加数据或改变图像合成的设置。此外,我们通过考虑学习动态分析转移学习理论,确认衍生的概括性约束与我们的经验调查结果一致。我们通过经验验证了我们关于各种实验性基准任务、模型大小和合成图像复杂性的缩放法。