A challenging aspect of the bandit problem is that a stochastic reward is observed only for the chosen arm and the rewards of other arms remain missing. The dependence of the arm choice on the past context and reward pairs compounds the complexity of regret analysis. We propose a novel multi-armed contextual bandit algorithm called Doubly Robust (DR) Thompson Sampling employing the doubly-robust estimator used in missing data literature to Thompson Sampling with contexts (\texttt{LinTS}). Different from previous works relying on missing data techniques (\citet{dimakopoulou2019balanced}, \citet{kim2019doubly}), the proposed algorithm is designed to allow a novel additive regret decomposition leading to an improved regret bound with the order of $\tilde{O}(\phi^{-2}\sqrt{T})$, where $\phi^2$ is the minimum eigenvalue of the covariance matrix of contexts. This is the first regret bound of \texttt{LinTS} using $\phi^2$ without the dimension of the context, $d$. Applying the relationship between $\phi^2$ and $d$, the regret bound of the proposed algorithm is $\tilde{O}(d\sqrt{T})$ in many practical scenarios, improving the bound of \texttt{LinTS} by a factor of $\sqrt{d}$. A benefit of the proposed method is that it utilizes all the context data, chosen or not chosen, thus allowing to circumvent the technical definition of unsaturated arms used in theoretical analysis of \texttt{LinTS}. Empirical studies show the advantage of the proposed algorithm over \texttt{LinTS}.


翻译:土匪问题的一个具有挑战性的方面是: 仅对所选的手臂 { 显示一种随机奖赏 { 而其他手臂的奖赏仍然缺失。 手臂选择对过去背景的依赖性以及奖赏配对使遗憾分析更加复杂。 我们提出一个叫 Doubly Robust (DR) Thompson Sampling 的新型多武装背景土匪算法, 使用缺少数据文献中用于汤普森抽样(\ textt{ Lintts} ) 的双向估量。 与以往依赖缺失的数据技术的操作不同 (\ citet{ dimakopoulou2019 sumate},\ creatert{ keytral defectral t$} 和 $2\ kmundblistal2\\\ ddobly} 运算法中的第一个遗憾框框框框框框。 使用美元2\ kendral\\\ dq{ dal deal deal develys a ride, listrates of $ dies a $ dride, listrates a produde, list\ s produdeal_ d d d d dr) $= d d d disal.

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员