Apache Mesos, a cluster-wide resource manager, is widely deployed in massive scale at several Clouds and Data Centers. Mesos aims to provide high cluster utilization via fine grained resource co-scheduling and resource fairness among multiple users through Dominant Resource Fairness (DRF) based allocation. DRF takes into account different resource types (CPU, Memory, Disk I/O) requested by each application and determines the share of each cluster resource that could be allocated to the applications. Mesos has adopted a two-level scheduling policy: (1) DRF to allocate resources to competing frameworks and (2) task level scheduling by each framework for the resources allocated during the previous step. We have conducted experiments in a local Mesos cluster when used with frameworks such as Apache Aurora, Marathon, and our own framework Scylla, to study resource fairness and cluster utilization. Experimental results show how informed decision regarding second level scheduling policy of frameworks and attributes like offer holding period, offer refusal cycle and task arrival rate can reduce unfair resource distribution. Bin-Packing scheduling policy on Scylla with Marathon can reduce unfair allocation from 38\% to 3\%. By reducing unused free resources in offers we bring down the unfairness from to 90\% to 28\%. We also show the effect of task arrival rate to reduce the unfairness from 23\% to 7\%.
翻译:阿帕奇·梅索斯(Apache Mesos)是一家全集群资源管理机构,在多个云端和数据中心广泛大规模部署。梅索斯的目标是通过基于支配性资源公平分配(DRF)的配置,在多个用户中提供高集利用。DRF考虑到每个应用程序所要求的不同资源类型(CPU、M99、Disk I/O),并确定每个集群资源中可分配给应用程序的份额。Mesos采取了一个两级的时间安排政策:(1) DRF将资源分配给相互竞争的框架,和(2) 每个框架为前一步分配的资源安排任务级别。我们在使用Apache Aurora、Marathon和我们自己的Scylla等框架时,在本地的Mesos群组中进行了实验,以研究资源的公平和集资利用。实验结果显示,关于第二个级别框架和属性的列表政策知情决定,如提议持有期、提供拒绝周期和任务抵达率可以减少不公平的资源分配。通过Bin-Pack Scyllla与Marathon的时间安排政策可以将不公平的分配从38___ 降低到23__xxxxxxxxxnnn 的不公差。