Cooperatively Localizing robots should seek optimal control strategies to maximize precision of position estimation and ensure safety in flight. Observability-Aware Trajectory Optimization has strong potential to address this issue, but no concrete link between observability and precision has been proven yet. In this paper, we prove that improvement in positioning precision inherently follows from optimizing observability. Based on this finding, we develop an Observability-Aware Control principle to generate observability-optimal control strategies. We implement this principle in a Model Predictive Control framework, and we verify it on a team of quadrotor Unmanned Aerial Vehicles comprising a follower vehicle localizing itself by tracking a leader vehicle in both simulations and real-world flight tests. Our results demonstrate that maximizing observability contributed to improving global positioning precision for the quadrotor team.
翻译:暂无翻译