Recent advances in deep learning have led to increased interest in solving high-efficiency end-to-end transmission problems using methods that employ the nonlinear property of neural networks. These methods, we call semantic coding, extract semantic features of the source signal across space and time, and design source-channel coding methods to transmit these features over wireless channels. Rapid progress has led to numerous research papers, but a consolidation of the discovered knowledge has not yet emerged. In this article, we gather ideas to categorize the expansive aspects on semantic coding as two paradigms, i.e., explicit and implicit semantic coding. We first focus on those two paradigms of semantic coding by identifying their common and different components in building semantic communication systems. We then focus on the applications of semantic coding to different transmission tasks. Our article highlights the improved quality, flexibility, and capability brought by semantic coded transmission. Finally, we point out future directions.
翻译:深度学习的最新进展导致了使用神经网络的非线性属性解决高效端到端传输问题的方法越来越受到关注。我们称这些方法为语义编码,它们跨越时间和空间提取源信号的语义特征,并设计源-信道编码方法将这些特征传输到无线信道上。快速进展已经产生了许多研究论文,但是尚未出现已发现知识的汇总。在本文中,我们汇集了各种思想,将广泛的语义编码方面分类为两种范式,即显式和隐式语义编码。首先,我们专注于语义编码的这两种范式,通过识别它们在构建语义通信系统中的共同和不同的组成部分来进行。然后,我们聚焦于将语义编码应用于不同的传输任务。我们的文章强调了语义编码传输带来的改善质量、灵活性和能力。最后,我们指出未来的方向。