Spatial structures in the 3D space are important to determine molecular properties. Recent papers use geometric deep learning to represent molecules and predict properties. These papers, however, are computationally expensive in capturing long-range dependencies of input atoms; and have not considered the non-uniformity of interatomic distances, thus failing to learn context-dependent representations at different scales. To deal with such issues, we introduce 3D-Transformer, a variant of the Transformer for molecular representations that incorporates 3D spatial information. 3D-Transformer operates on a fully-connected graph with direct connections between atoms. To cope with the non-uniformity of interatomic distances, we develop a multi-scale self-attention module that exploits local fine-grained patterns with increasing contextual scales. As molecules of different sizes rely on different kinds of spatial features, we design an adaptive position encoding module that adopts different position encoding methods for small and large molecules. Finally, to attain the molecular representation from atom embeddings, we propose an attentive farthest point sampling algorithm that selects a portion of atoms with the assistance of attention scores, overcoming handicaps of the virtual node and previous distance-dominant downsampling methods. We validate 3D-Transformer across three important scientific domains: quantum chemistry, material science, and proteomics. Our experiments show significant improvements over state-of-the-art models on the crystal property prediction task and the protein-ligand binding affinity prediction task, and show better or competitive performance in quantum chemistry molecular datasets. This work provides clear evidence that biochemical tasks can gain consistent benefits from 3D molecular representations and different tasks require different position encoding methods.
翻译:3D 空间的空间结构对于确定分子特性很重要 。 最近的文件使用几何深学习来代表分子和预测特性。 然而, 这些文件在计算上成本高昂, 以获取输入原子的远距离依赖性; 没有考虑进化距离的不一致性, 因而没有在不同尺度上学习环境依赖的表达方式。 为了处理这些问题, 我们引入了 3D- Transfer, 这是分子表示方式的变异器, 包含 3D 空间信息 。 3D- Transformex 在一个完全连接的图表上运行, 与原子直接连接。 然而, 要应对进化距离不一致性的问题, 我们开发了一个多尺度的自我注意模块, 利用本地精细度的距离, 因而没有考虑到不同空间特性的表达方式。 我们设计了一个适应位置的调和调和调和调调的模块, 从原子嵌入的分子代表方式, 我们提出一个远处的测测算点, 3Oalteralalalalalalalalalalalal 的测算方法可以显示我们之前的精确度和直径直径直径的精确度 。