We present EgoNeRF, a practical solution to reconstruct large-scale real-world environments for VR assets. Given a few seconds of casually captured 360 video, EgoNeRF can efficiently build neural radiance fields which enable high-quality rendering from novel viewpoints. Motivated by the recent acceleration of NeRF using feature grids, we adopt spherical coordinate instead of conventional Cartesian coordinate. Cartesian feature grid is inefficient to represent large-scale unbounded scenes because it has a spatially uniform resolution, regardless of distance from viewers. The spherical parameterization better aligns with the rays of egocentric images, and yet enables factorization for performance enhancement. However, the na\"ive spherical grid suffers from irregularities at two poles, and also cannot represent unbounded scenes. To avoid singularities near poles, we combine two balanced grids, which results in a quasi-uniform angular grid. We also partition the radial grid exponentially and place an environment map at infinity to represent unbounded scenes. Furthermore, with our resampling technique for grid-based methods, we can increase the number of valid samples to train NeRF volume. We extensively evaluate our method in our newly introduced synthetic and real-world egocentric 360 video datasets, and it consistently achieves state-of-the-art performance.
翻译:我们提出EgoNeRF,一种实现VR资产中重建大规模真实世界环境的实用解决方案。根据几秒钟的随意捕捉的360视频,EgoNeRF可以高效建立神经辐射场,从新视角实现高质量渲染。受到最近的使用特征网格加速NeRF的启发,我们采用球形坐标代替传统的笛卡尔坐标。笛卡尔特征网格无法有效表示大规模无界场景,因为它具有空间均匀分辨率,而与观察者的距离无关。球面参数化更符合自我中心图像的射线,并启用分解以提高性能。然而,朴素球面网格会在两个极点处出现不规则性,并且无法表示无界场景。为了避免极点附近的奇异性,我们结合了两个平衡的网格,从而产生了准均匀的角度网格。我们还通过指数方式对径向网格进行划分,并在无穷远处放置环境地图以表示无界场景。此外,通过我们基于网格的方法的重采样技术,我们可以增加有效样本的数量,以训练NeRF体积。我们在我们最近介绍的合成和真实的自我中心360视频数据集中广泛评估了我们的方法,它始终实现了最先进的性能。