In Topological Data Analysis, a common way of quantifying the shape of data is to use a persistence diagram (PD). PDs are multisets of points in $\mathbb{R}^2$ computed using tools of algebraic topology. However, this multi-set structure limits the utility of PDs in applications. Therefore, in recent years efforts have been directed towards extracting informative and efficient summaries from PDs to broaden the scope of their use for machine learning tasks. We propose a computationally efficient framework to convert a PD into a vector in $\mathbb{R}^n$, called a vectorized persistence block (VPB). We show that our representation possesses many of the desired properties of vector-based summaries such as stability with respect to input noise, low computational cost and flexibility. Through simulation studies, we demonstrate the effectiveness of VPBs in terms of performance and computational cost within various learning tasks, namely clustering, classification and change point detection.


翻译:在地形数据分析中,量化数据形状的一个常见方法是使用持久性图(PD)来量化数据形状。PD是使用代数表学工具计算出的多组点数,单位为$\mathb{R ⁇ 2美元。然而,这种多套结构限制了PD在应用中的效用。因此,近年来努力从PD提取信息化和高效的摘要,以扩大其用于机器学习任务的范围。我们提出了一个计算效率高的框架,将PD转换成以$\mathbb{R ⁇ n$为矢量的矢量,称为矢量化持久性块(VPB)。我们表明,我们的代表拥有基于矢量的摘要的许多预期特性,如输入噪音的稳定、低计算成本和灵活性。我们通过模拟研究,展示了VPB在各种学习任务(即集束、分类和改变点探测)中的性能和计算成本。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
9+阅读 · 2021年10月1日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
35+阅读 · 2020年1月2日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员