The use of crowdworkers in NLP research is growing rapidly, in tandem with the exponential increase in research production in machine learning and AI. Ethical discussion regarding the use of crowdworkers within the NLP research community is typically confined in scope to issues related to labor conditions such as fair pay. We draw attention to the lack of ethical considerations related to the various tasks performed by workers, including labeling, evaluation, and production. We find that the Final Rule, the common ethical framework used by researchers, did not anticipate the use of online crowdsourcing platforms for data collection, resulting in gaps between the spirit and practice of human-subjects ethics in NLP research. We enumerate common scenarios where crowdworkers performing NLP tasks are at risk of harm. We thus recommend that researchers evaluate these risks by considering the three ethical principles set up by the Belmont Report. We also clarify some common misconceptions regarding the Institutional Review Board (IRB) application. We hope this paper will serve to reopen the discussion within our community regarding the ethical use of crowdworkers.


翻译:随着机器学习和AI研究中研究成果的飞速增长,在NLP研究中使用人群工人的情况正在迅速增加。 关于在NLP研究界使用人群工人的道德讨论通常局限于与劳动条件有关的问题,如公平报酬。我们提请注意工人从事的各种工作缺乏道德考虑,包括标签、评价和生产。我们发现,《最后规则》,即研究人员使用的共同道德框架,没有预见到利用在线人群采购平台收集数据,导致在NLP研究中人类主体道德精神与实践之间的差距。我们列举了从事人群工人执行NLP任务面临伤害风险的常见情况。我们因此建议研究人员通过考虑《贝尔蒙特报告》确立的三项道德原则来评估这些风险。我们还澄清了机构审查委员会(IRB)应用方面的一些常见误解。我们希望这份文件将有助于在社区内重新讨论人群工人的道德使用问题。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员