In this paper, we proposed a novel mutual consistency network (MC-Net+) to effectively exploit the unlabeled hard regions for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in the ambiguous regions (e.g. adhesive edges or thin branches) for the image segmentation task. Leveraging these region-level challenging samples can make the semi-supervised segmentation model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple sightly different decoders (i.e. using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, a new mutual consistency constraint is enforced between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the model's uncertainty during training and force the model to generate invariant and low-entropy results in such challenging areas of unlabeled data, in order to learn a generalized feature representation. We compared the segmentation results of the MC-Net+ with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two common semi-supervised settings demonstrate the superior performance of our model over other existing methods, which sets a new state of the art for semi-supervised medical image segmentation.
翻译:在本文中,我们提出了一个新的相互一致性网络(MC-Net+ ), 以有效地利用未标记的硬区域进行半监督医疗图像分割。 MC- Net+ 模型的动机是观察到, 受过有限说明培训的深模型容易在模糊区域(如粘合边缘或薄枝)产生非常不确定和容易错误的预测, 以完成图像分割任务。 利用这些区域级具有挑战性的样本可以使半监督的分解模型扩展培训更加有效。 因此, 我们提议的 MC- Net+ 模型由两种新设计组成。 首先, 该模型包含一个共享的高级解码器和多个视觉不同的解码器( 即使用不同的上标战略 ) 。 多解码器输出的统计差异可以说明模型的不确定性, 这表明未加标签的硬区域。 其次, 将新的相互一致性限制在一个解码半监督的半监督分解模型的扩展模型和其他软化的虚拟标签。 以这种方式, 我们尽可能减少一个共同的高级的高级解析模型, 和多可见的解析的解析模型在三个模型中, 将数据结构的模型, 演示中, 演示的模型的模型的模型将产生一个高变的模型 数据结构,,, 以在这样的模型的模型的模型的模型将数据结构的模型的模型的模型的模型的模型 以低变变的模型的模型的模型的模型 的模型 学习到的模型 的模型 的模型 的 的 的 的 的 的 的 的 的 的 的 的 的 和低变式的 。