To facilitate zero-shot generalization in taskoriented dialog, this paper proposes Language Models as Data (LAD). LAD is a paradigm for creating diverse and accurate synthetic data which conveys the necessary structural constraints and can be used to train a downstream neural dialog model. LAD leverages GPT-3 to induce linguistic diversity. LAD achieves significant performance gains in zero-shot settings on intent prediction (+15%), slot filling (+31.4 F-1) and next action prediction (+11 F1). Furthermore, an interactive human evaluation shows that training with LAD is competitive with training on human dialogs. LAD is open-sourced, with the code and data available at https://github.com/Shikib/lad.
翻译:为促进任务导向对话的零点概括化,本文件建议语言模型作为数据(LAD) 。LAD是创建多样和准确的合成数据的范例,它传达了必要的结构性限制,可用于培训下游神经对话模式。LAD利用GPT-3来引导语言多样性。LAD在意向预测(+15%)、空档填充(+314 F-1)和下一个行动预测(+11 F1)。此外,互动式人类评价显示,与LAD的培训具有竞争力,与关于人类对话的培训具有竞争力。LAD是开放来源,代码和数据可在https://github.com/Shikikib/lad上查阅。