For $d \ge 2$ and all $q\geq q_{0}(d)$ we give an efficient algorithm to approximately sample from the $q$-state ferromagnetic Potts and random cluster models on finite tori $(\mathbb Z / n \mathbb Z )^d$ for any inverse temperature $\beta\geq 0$. This shows that the physical phase transition of the Potts model presents no algorithmic barrier to efficient sampling, and stands in contrast to Markov chain mixing time results: the Glauber dynamics mix slowly at and below the critical temperature, and the Swendsen--Wang dynamics mix slowly at the critical temperature. We also provide an efficient algorithm (an FPRAS) for approximating the partition functions of these models at all temperatures. Our algorithms are based on representing the random cluster model as a contour model using Pirogov--Sinai theory, and then computing an accurate approximation of the logarithm of the partition function by inductively truncating the resulting cluster expansion. The main innovation of our approach is an algorithmic treatment of unstable ground states, which is essential for our algorithms to apply to all inverse temperatures $\beta$. By treating unstable ground states our work gives a general template for converting probabilistic applications of Pirogov-Sinai theory to efficient algorithms.
翻译:$2 和 all $q\ geqqqqqq q ⁇ 0}(d) 我们给一个高效的算法, 大约样本来自 $q$-state 铁磁波和随机集束模型, 大约样本来自 $q$- state 铁磁波和随机集束模型, 大约样本来自 $(mathbb Z / n\ mathbb Z) z 美元, 任何反温 $\ betata\ geq 0.美元。 这显示波茨模式的物理阶段过渡对高效取样没有算法障碍, 并且与Markov 链混合时间结果形成对比: Glauber 动态在临界温度和下缓慢地混合, Swendersen-Wang 动态组合组合在关键温度下缓慢地混合。 我们还提供了高效的算法( an FPRAS ), 在所有温度变化状态中, 我们的算法将随机集模型模型作为轮模型的模型, 然后计算对分布函数的准确的对正对结果进行精确的对价调的对价 。