This report describes a set of neonatal electroencephalogram (EEG) recordings graded according to the severity of abnormalities in the background pattern. The dataset consists of 169 hours of multichannel EEG from 53 neonates recorded in a neonatal intensive care unit. All neonates received a diagnosis of hypoxic-ischaemic encephalopathy (HIE), the most common cause of brain injury in full term infants. For each neonate, multiple 1-hour epochs of good quality EEG were selected and then graded for background abnormalities. The grading system assesses EEG attributes such as amplitude and frequency, continuity, sleep--wake cycling, symmetry and synchrony, and abnormal waveforms. Background severity was then categorised into 4 grades: normal or mildly abnormal EEG, moderately abnormal EEG, severely abnormal EEG, and inactive EEG. The data can be used as a reference set of multi-channel EEG for neonates with HIE, for EEG training purposes, or for developing and evaluating automated grading algorithms.
翻译:本报告介绍了一套根据背景模式异常严重性分级的新生儿脑电图记录,该数据集由在新生儿特护单位记录的53个新生儿的多通道EEG 169小时组成,所有新生儿都接受了缺氧性心血管炎病(HIE)诊断,这是造成全期婴儿脑损伤的最常见原因。对于每个新生儿,选择了多个1小时质量良好的EEG小区,然后按背景异常程度分级。评级系统评估EEG的属性,如振幅和频率、连续性、觉觉觉循环、对称和同步以及异常波形。背景严重性随后被分类为四级:正常或轻微异常EEEG、中度异常EEEG、严重异常的EEG和不活动的EEG。这些数据可以用作与HIE一起用于新生儿多频道EG的参考集,用于EG培训,或用于开发和评估自动定级算法。