The Laplace transform is a useful and powerful analytic tool with applications to several areas of applied mathematics, including differential equations, probability and statistics. Similarly to the inversion of the Fourier transform, inversion formulae for the Laplace transform are of central importance; such formulae are old and well-known (Fourier-Mellin or Bromwich integral, Post-Widder inversion). The present work is motivated from an elementary statistical problem, namely, the unbiased estimation of a parametric function of the scale in the basic model of a random sample from exponential distribution. The form of the uniformly minimum variance unbiased estimator of a parametric function $h(\lambda)$, as well as its variance, are obtained as series in Laguerre polynomials and the corresponding Fourier coefficients, and a particular application of this result yields a novel inversion formula for the Laplace transform. MSC: Primary 44A10, 62F10. Key words and phrases: Exponential Distribution, Unbiased Estimation; Fourier-Laguerre Series; Inverse Laplace Transform; Laguerre Polynomials.
翻译:Laplace变换是一个有用和强大的分析工具,适用于应用数学的若干领域,包括差异方程、概率和统计。与Fourier变换的反转一样,Laplace变换的反转公式具有核心重要性;这种公式古老而广为人知(Fourier-Mellin或Bromwich集成、Widder后反转)。目前的工作源于一个基本的统计问题,即对指数分布随机抽样基本模型中比例的参数函数的不偏袒估计。参数函数的单一最小差异公正估计值($h (\lambda))的形式及其差异,作为Laguerre 多元系数和相应的Fourier系数系列获得,而这一结果的特定应用为Laplace变换产生了一种新型的变换公式。MS:初级44A10、62F10。关键词和短语:指数分布、不偏差的 Estimation;四更远的Laquimerre系列;Inversal Laplimplace;Laplace。