We propose a new approach for the problem of relative depth estimation from a single image. Instead of directly regressing over depth scores, we formulate the problem as estimation of a probability distribution over depth and aim to learn the parameters of the distributions which maximize the likelihood of the given data. To train our model, we propose a new ranking loss, Distributional Loss, which tries to increase the probability of farther pixel's depth being greater than the closer pixel's depth. Our proposed approach allows our model to output confidence in its estimation in the form of standard deviation of the distribution. We achieve state of the art results against a number of baselines while providing confidence in our estimations. Our analysis show that estimated confidence is actually a good indicator of accuracy. We investigate the usage of confidence information in a downstream task of metric depth estimation, to increase its performance.
翻译:我们建议从一个图像中为相对深度估算问题采取新的办法。我们不直接在深度分数上退缩,而是将问题作为深度分数的概率分布估计,目的是了解分配参数,以便尽可能扩大给定数据的可能性。为了培训我们的模型,我们提议了一个新的排名损失,即分配损失,以试图增加更远像素深度大于更近像素深度的概率。我们提议的办法使我们的模型能够以分布标准偏差的形式产生对其估计的信心。我们在一些基线上取得了最新的结果,同时对我们的估算提供了信心。我们的分析表明,估计的信心实际上是准确性的一个很好的指标。我们调查了在下游的量深度估算工作中信任信息的使用情况,以提高其性能。