Uncertainty quantification is crucial for building reliable and trustable machine learning systems. We propose to estimate uncertainty in recurrent neural networks (RNNs) via stochastic discrete state transitions over recurrent timesteps. The uncertainty of the model can be quantified by running a prediction several times, each time sampling from the recurrent state transition distribution, leading to potentially different results if the model is uncertain. Alongside uncertainty quantification, our proposed method offers several advantages in different settings. The proposed method can (1) learn deterministic and probabilistic automata from data, (2) learn well-calibrated models on real-world classification tasks, (3) improve the performance of out-of-distribution detection, and (4) control the exploration-exploitation trade-off in reinforcement learning.
翻译:不确定性的量化对于建立可靠和可信赖的机器学习系统至关重要。我们提议通过在经常性时间跨度中进行随机分立的离散状态转换来估计经常神经网络(RNN)的不确定性。模型的不确定性可以通过进行多次预测来量化,每次从经常性的州过渡分布中取样一次,如果模型不确定,则可能导致不同的结果。除了不确定性的量化之外,我们提出的方法在不同环境中提供了若干优势。拟议方法可以:(1) 从数据中学习确定性和概率性自动数据,(2) 学习关于现实世界分类任务的合理校准模型,(3) 改进分配外检测的绩效,(4) 在强化学习中控制勘探-开发交易。