We formulate and test a technique to use Emergent Communication (EC) with a pretrained multilingual model to improve on modern Unsupervised NMT systems, especially for low-resource languages. It has been argued that the currently dominant paradigm in NLP of pretraining on text-only corpora will not yield robust natural language understanding systems, and the need for grounded, goal-oriented, and interactive language learning has been highlighted. In our approach, we embed a modern multilingual model (mBART, Liu et. al. 2020) into an EC image-reference game, in which the model is incentivized to use multilingual generations to accomplish a vision-grounded task, with the hypothesis that this will align multiple languages to a shared task space. We present two variants of EC Fine-Tuning (Steinert-Threlkeld et. al. 2022), one of which outperforms a backtranslation-based baseline in 6/8 translation settings, and proves especially beneficial for the very low-resource languages of Nepali and Sinhala.
翻译:我们制定并测试一种技术,即利用经过预先训练的多语言模式使用新兴通信(EC),改进现代不受监督的NMT系统,特别是低资源语言的NMT系统;有人争辩说,目前在NLP中,只对文本公司进行预先培训的主导模式不会产生强有力的自然语言理解系统,并强调了有根有素、面向目标和互动式语言学习的必要性;在我们的方法中,我们将现代多语言模式(MBART、刘等人,2020年)嵌入了EC的图像参考游戏,激励该模式利用多语言世代完成基于愿景的任务,假设这将使多种语言与共同的任务空间相匹配。 我们提出了欧盟委员会精细化的两个变体(Steinert-Threlkeld等人,2022年),其中的一个变异体超越了6/8翻译环境中基于背译的基线,并证明对尼泊尔语和辛哈拉语资源极低的语言特别有益。