Knowledge distillation is a generalized logits matching technique for model compression. Their equivalence is previously established on the condition of $\textit{infinity temperature}$ and $\textit{zero-mean normalization}$. In this paper, we prove that with only $\textit{infinity temperature}$, the effect of knowledge distillation equals to logits matching with an extra regularization. Furthermore, we reveal that an additional weaker condition -- $\textit{equal-mean initialization}$ rather than the original $\textit{zero-mean normalization}$ already suffices to set up the equivalence. The key to our proof is we realize that in modern neural networks with the cross-entropy loss and softmax activation, the mean of back-propagated gradient on logits always keeps zero.
翻译:知识蒸馏是一种用于模型压缩的通用逻辑匹配技术。 其等值先前是在 $\ textit{ Infinity 温度} $ 和 $\ textit{ 零平均值正统} $ 的条件下确定的。 在本文中, 我们证明, 只有 $\ textit{ infinity 温度} $, 知识蒸馏的效果等于 logits 匹配额外的正规化。 此外, 我们发现, 额外的一个较弱条件 -- -- $\ textit{ equalization} $, 而不是原始的 $\ textit{ 零平均值正统} $ 已经足以建立等值 。 我们证据的关键在于我们认识到, 在现代神经网络中, 交叉天花损和软轴激活, 在日志上的反方向梯度梯值总是保持零 。