While 3-SAT is NP-hard, 2-SAT is solvable in polynomial time. Austrin, Guruswami, and H\r{a}stad roved a result known as "$(2+\varepsilon)$-SAT is NP-hard" [FOCS'14/SICOMP'17]. They showed that the problem of distinguishing k-CNF formulas that are g-satisfiable (i.e. some assignment satisfies at least g literals in every clause) from those that are not even 1-satisfiable is NP-hard if $\frac{g}{k} < \frac{1}{2}$ and is in P otherwise. We study a generalisation of SAT on arbitrary finite domains, with clauses that are disjunctions of unary constraints, and establish analogous behaviour. Thus we give a dichotomy for a natural fragment of promise constraint satisfaction problems (PCSPs) on arbitrary finite domains. The hardness side is proved using the algebraic approach, via a new general NP-hardness criterion on polymorphisms of the problem, based on a gap version of the Layered Label Cover problem. We show that previously used criteria are insufficient -- the problem hence gives an interesting benchmark of algebraic techniques for proving hardness of approximation problems such as PCSPs.
翻译:虽然 3 SAT 是 NP- 硬, 2 SAT 是 3- SAT 是 多式 时间 。 Austrin, Guruswami 和 H\r{a}stad 是 一个被称为 "$( 2 ⁇ varepsilon) $- SAT 是 NP-hard " [ FOCS'14/ SICOMP' 17] 。 它们表明, k- CNF 公式是 g- satisfilable ( 即有些任务满足了每个条款中至少一字的满意度) 和那些甚至一字都不满意的公式的问题 。 如果 $\ frac{g} < g{k} <\ frac{ 1\2} 和 H\r}stad 是 一个被称为 " $( 2\\ vac{1\\\\\ 2} 美元) 的流转结果, 那么, 我们研究的是, SAT 在任意性约束性约束性制约性满足性问题的自然碎片 问题( PCSPs) 满意度问题中, 我们给出了一种分法。 硬性方面证明 使用 的平基平面法 方法是 的平面法, 的平面法 标准是 的,, 的 的 标准是 的 的 。